
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/391955561

Overview of the Sun Network File System

Conference Paper · January 1985

CITATIONS

5
READS

18

9 authors, including:

David Goldberg

eBay Inc

60 PUBLICATIONS   11,314 CITATIONS   

SEE PROFILE

Tom Lyon

Princeton University

18 PUBLICATIONS   721 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Tom Lyon on 22 May 2025.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/391955561_Overview_of_the_Sun_Network_File_System?enrichId=rgreq-3d33a4b8446123492500c01b3f354b08-XXX&enrichSource=Y292ZXJQYWdlOzM5MTk1NTU2MTtBUzoxMTQzMTI4MTQ1MjEyNDQyMUAxNzQ3ODkyMjU0MjYw&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/391955561_Overview_of_the_Sun_Network_File_System?enrichId=rgreq-3d33a4b8446123492500c01b3f354b08-XXX&enrichSource=Y292ZXJQYWdlOzM5MTk1NTU2MTtBUzoxMTQzMTI4MTQ1MjEyNDQyMUAxNzQ3ODkyMjU0MjYw&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3d33a4b8446123492500c01b3f354b08-XXX&enrichSource=Y292ZXJQYWdlOzM5MTk1NTU2MTtBUzoxMTQzMTI4MTQ1MjEyNDQyMUAxNzQ3ODkyMjU0MjYw&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Goldberg-14?enrichId=rgreq-3d33a4b8446123492500c01b3f354b08-XXX&enrichSource=Y292ZXJQYWdlOzM5MTk1NTU2MTtBUzoxMTQzMTI4MTQ1MjEyNDQyMUAxNzQ3ODkyMjU0MjYw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Goldberg-14?enrichId=rgreq-3d33a4b8446123492500c01b3f354b08-XXX&enrichSource=Y292ZXJQYWdlOzM5MTk1NTU2MTtBUzoxMTQzMTI4MTQ1MjEyNDQyMUAxNzQ3ODkyMjU0MjYw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Goldberg-14?enrichId=rgreq-3d33a4b8446123492500c01b3f354b08-XXX&enrichSource=Y292ZXJQYWdlOzM5MTk1NTU2MTtBUzoxMTQzMTI4MTQ1MjEyNDQyMUAxNzQ3ODkyMjU0MjYw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom-Lyon?enrichId=rgreq-3d33a4b8446123492500c01b3f354b08-XXX&enrichSource=Y292ZXJQYWdlOzM5MTk1NTU2MTtBUzoxMTQzMTI4MTQ1MjEyNDQyMUAxNzQ3ODkyMjU0MjYw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom-Lyon?enrichId=rgreq-3d33a4b8446123492500c01b3f354b08-XXX&enrichSource=Y292ZXJQYWdlOzM5MTk1NTU2MTtBUzoxMTQzMTI4MTQ1MjEyNDQyMUAxNzQ3ODkyMjU0MjYw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Princeton_University?enrichId=rgreq-3d33a4b8446123492500c01b3f354b08-XXX&enrichSource=Y292ZXJQYWdlOzM5MTk1NTU2MTtBUzoxMTQzMTI4MTQ1MjEyNDQyMUAxNzQ3ODkyMjU0MjYw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom-Lyon?enrichId=rgreq-3d33a4b8446123492500c01b3f354b08-XXX&enrichSource=Y292ZXJQYWdlOzM5MTk1NTU2MTtBUzoxMTQzMTI4MTQ1MjEyNDQyMUAxNzQ3ODkyMjU0MjYw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom-Lyon?enrichId=rgreq-3d33a4b8446123492500c01b3f354b08-XXX&enrichSource=Y292ZXJQYWdlOzM5MTk1NTU2MTtBUzoxMTQzMTI4MTQ1MjEyNDQyMUAxNzQ3ODkyMjU0MjYw&el=1_x_10&_esc=publicationCoverPdf


Overview of the Sun Network File System
Dan Walsh, Bob Lyon, Gary Sager,

and members of the Sun NFS project:
J. M. Chang, D. Goldberg, S. Kleiman,
T. Lyon, R. Sandberg, and P. Weiss

Sun Microsystems, Inc.

Sun's Network File System (NFS) is a vehicle for sharing file systems in a
heterogeneous network of machines, operating systems and networks. The NFS
interface is open, and Sun encourages customers, users and other vendors to take
advantage of the open interface to extend the richness of the product.

1 . I n t r o d u c t i o n

Sun's Network File System (NFS) permits
transparent sharing of file systems in a
heterogeneous network of machines, operate
ing systems and networks. The view of the
file system seen by a client depends upon
mutual agreement of the client and servers;
servers supply parts of the file system to the
network, and clients have a great deal of
freedom in setting up their access. It will
usually be most convenient to provide a
large UNIXf file system to all clients of the
network, but service can be tailored to a
variety of individual requirements. Clients
can make informal arrangements to share
files via the NFS without special privilege
and without appeal to authority. Because
this flexibility can make the maintenance
and administration of the system difficult,
new tools are provided to make the
administrator's job easier.

The NFS was not designed by extending the
UNIX operating system onto the net.
Instead, the NFS is designed to fit into Sun's
network services architecture [1]. Thus, the
NFS interface is not a step towards a
distributed operating system; rather, the NFS
interface is designed to allow a variety of
machines and/or operating systems to play

t UNIX is ft tr&demark of Bell L&borstories.

the role of client or server. Sun has opened
the NFS interface to customers and other
vendors in order to encourage development
of a rich set of applications, machines and
operating systems working together on the
n e t w o r k .

2 . A r c h i t e c t u r e a n d
Imp lementa t ion

To add precision to the discussions which
follow, it is necessary to define several terms
and concepts. First, there is a distinction
between the code implementing the
operations of a file system and the data
making up the file system structure and
contents; we refer to the former as the file
system operations and the latter as the file
system data. A server is a machine that
serves resources to the network, and a client
is a machine that accesses server resources
over the network. A machine may be both a
server and a client. Finally, a user is a
person "logged in" at a client, and an
application is a program or set of programs
that run on a c l ien t .

In the Sun implementation of the NFS
architecture (Figure 1), there are three
interfaces to be considered: the operating
system interface, the virtual file system node
(VNODE) interface, and the network file
system (NFS) interface. The operating
system interface is important because it is

1 1 7



used directly by applications. The UNDC
operating system interface has been largely
preserved in the Sun implementation of the
NFS, thereby insuring compatibility for
existing applications.

VNODEs are a re*implementation of UNIX
inodes that cleanly separate file system
operations from the semantics of their
implementation. Above the VNODE
interface, the operating system deals in
vnodes; below the interface, the file system
may or may not implement inodes. The
VNODE interface can connect the operating
system to a variety of file systems (e.g. 4.2
BSD or DOS); these are designated in Figure 1
as VFS's (virtual file systems). A local VPS
connects to file system data on a local
d e v i c e .

The remote VPS defines and implements the
NFS interface. The remote VPS uses a
remote procedure call (RFC) [2] mechanism;
R F C a l l o w s c o m m u n i c a t i o n w i t h r e m o t e
services in a manner similar to procedure
calling mechanisms available in many
programming languages. The NFS and RFC
"high-level protocols" arc described using
the external data representation (XDR) [3]
package; XDR permits a machine-
independent representation and definition of
high-level protocols on the network.

Figure 1 shows the flow of a request from a
client (on the left) to a collection of file
systems. In the case of access through a
local VPS, requests are directed to file system
data on devices connected to the client
machine. In the case of access through a
remote VPS, the request is passed through
the RFC and XDR layers onto the net. In the
current implementation, we use the UDF/IF
protocols and the Ethernet. On the server
side, requests are passed through the RFC
and XDR layers to an NFS server; the server
uses the VNODE interface to access one of its
local VPSs and service the request. This
path is retraced to return results.
It is useful to revisit the above discussion to
see how Sun's implementation of the NFS
provides five types of transparency:

1. Pile System Type: VNODE in
conjunction with one or more local VPS's
(and possibly remote VPS's) permits an
operating system (hence client and
application) to interface transparently to a
variety of file sjrstem types.

2. File System Loc&tion: Since there is no
differentiation between a local and a
remote VPS, the location of file system
data is transparent.

3. Operating System Type: The RFC
mechanism allows interconnection of a
variety of operating systems on the
network and makes the operating system
type of a remote server transparent.

4. Machine Type: The XDR definition
facility allows a variety of machines to
communicate on the network and makes
the machine type of a remote server
t ransparent .

6. Network Type: RFC and XDR can be
implemented for a variety of network and
internet protocols, thereby making the
network type transparent.

Simpler NFS implementations are possible at
the expense of some advantages of the Sun
version. In particular, a client (or server)
may be added to the network by
implementing one side of the NFS interface.
An stdvantage of the Sun implementation is
that the client and server sides are identical;
thus, it is possible for any machine to be
client, server or both. Users at client
machines with disks can arrange to share via
the NFS without having to appeal to a
system administrator or configure a different
system on their workstation.

3 . T h e N F S I n t e r f a c e

As mentioned in the preceding section, a
major advantage of the NFS is the ability to
mix file systems transparently. In keeping
with this, Sun encourages other vendors to
develop products to interface with Sun
network services. RFC and XDR have been
placed in the public domain and serve da a
standard for anyone wishing to develop

1 1 8



applications for the network. Furthermore,
the NFS interface itself is open and can be
used by anyone wishing to implement an
NFS c l ient or server for the network.

The NFS in te r face defines t rad i t i ona l fi le

system operations for reading directories,
creating and destroyirt; files, reading and
writing files, and reading and setting file
attributes. The interface is designed such
that file operations address files with an
uninterpreted identifier, starting byte
address and length in bytes.

Commands are provided for NFS servers to
initiate service (mounti), to serve a portion
of their file system to the network (txportft),
and to retract a portion of their file system
from the network (unexportft). A client
"builds" its view of the file systems available
on the network with the mount command
(described below).
The NFS interface is defined such that a
server can be statcteos. This means that a
server does not have to remember from one
transaction to the next anything about its
clients, transactions completed or files
operated on. For example, there is no open
operation, as this would imply state in the
server; of (jourse, the UNDC interface uses an
open operation, but the information in the
UNIX operation is remembered by the client '
for use in later NFS operations.
An interesting problem occurs when a UNDC
application unlinks an open file. This is
done to achieve the effect of a temporary file
that is automatically removed when the
application terminates. If the file in question
is served by the NFS, the unlink will remove
the file, since the server does not remember
that the file is open. Thus, subsequent
operations on the file will fail. In order to
avoid state on the server, the client
operating system detects the situation,
renames the file rather than unlinking it,
and unlinks the file when the application
terminates. In certain failure cases, this
leaves unwanted "temporary" files on the
server; these files are removed as a part of
periodic file system maintenance.

Another example of how the NFS provides a
friendly interface to UNDC without
introducing state is the mount command. A
UNDC client of the NFS "builds" its view of
the file system on its local devices using the
mount command; thus, it is natural for the
UNDC client to initiate its contact with the
NFS and build its view of the file system on
the network via an extended mount
command. This mount command does not
imply state in the server, since it only
acquires information for the client to
establish contact with a server. The mount
command may be issued at any time, but is
typically executed as a part of client
initialisation. The corresponding unmount
command (which replaces the UNDC umount)
is only an informative message to the server,
but it does change state in the client by
modifying its view of the file system on the
n e t w o r k .

The major advantage of a stateless server is
robustness in the face of client, server or
network failures. Should a client fail, it is
not necessary for a server (or human
administrator) to take any action to
continue normal operation. Should a server
or the network fail, it is only necessary that
clients continue to attempt to complete NFS
operations until the server or network is
fixed. This robustness is especially important
in a complex network of heterogeneous
systems, many of which are not under the
control of a disciplined operations staff and
may be running untested systems and/or
may be rebooted without warning.
An NFS server can be a client of another NFS
server. However, a server will not act as an
intermediary between a client and another
server. Instead, a client may ask what
remote mounts the server has and then
attempt to make similar remote mounts.
The decision to disallow intermediary servers
is based on several factors. First, the
existence of an intermediary will impact the
performance characteristics of the system;
the potential performance implications are so
complex that it seem? best to require direct
communication between a client and server.

1 1 9



Second, the existence of an intermediary
complicates access control; it is much
simpler to require a client and server to
establish direct agreements for service.
Finally, disallowing intermediaries prevents
cycles in the service arrangements; we
prefer this to detection or avoidance
schemes.

The NFS currently implements UNTX-style file
protection by making use of the
authentication mechanisms built into RFC.
This retains transparency for clients and
applications that make use of UNIX file
protection. Although the RFC definition
allows other authentication schemes, their
use may have adverse effects on
transparency.

Although the NFS is UNK-friendly, it docs
not support all UNDC file system operations.
For example, the UNDC "special file"
abstraction of devices is not supported for
remote file systems because it is felt that the
interface to devices would greatly complicate
the NFS interface; instead, devices are
implemented in a local /dcvVFS. Other
incompatibilities are due to the fact that NFS
servers are stateless. For example, file
locking and guaranteed APPEND_MODE are
not supported in the remote case.
Our decision to omit certain features from
the NFS is motivated by a desire to preserve
the stateless implementaton of servers and
to define a simple, general interface to be
implemented and used by a wide variety of
customers. The availability of open RFC and
NFS interfaces means that customers and
users who need stateful or complex features
can implement them "beside" or "within"
the NFS. Sun is considering implementation
of a set of tools for use by applications that
need file or record locking, replicated data,
or other features implying state and/or
distributed synchronization; however, these
will not be made part of the base NFS
d e fi n i t i o n .

4. Example
Figure 2 shows a possible file system view as
seen by three machines. The server machine
(bottom) has exported the f\ur2 and /u«r
trees with the commands:

exportfs -a /usr2
exportfs -a /usr

The "-a" option indicates that the
directories can be mounted by any client.

The clients (called "blue" and "red") have
e a ch mo u n te d su b t r e e s w i t h t h e co mma n d s :

mount -t nfs server:/usr2 /usr2
mount -t nfs server:/usr/src /usr/src

The "-t nfs" option is used to indicate that
the type of file system being mounted is
remote over the network; the location of the
file system is indicated by prepending the
server^s machine name and a colon to the
name of a directory in an exported tree.
Note that the clients selectively mount
/usr/src rather than all of /uir. With this
arrangement, all three machines share the
trees named /uar^and /usr/src.

Figure 2 also shows a sharing arrangement
between the blue and red machines. The
blue machine has a directory on a local disk
with the name /usr/pro/, and has exported
i t w i t h t h e c o m m a n d :

exportfs -a /usr/proj
The red mach ine has moun ted the sub t ree
with the command:

mount -t nfs blue:/usr/proj /usr/proj

Thus, the blue and red machines share the
/usr/pro/ directory, while the server is
unaware of the arrangement. If users of the
blue machine feel that it is important to
keep the sharing more private, the exportfe
command can restrict the set of machines
permitted to mount the subtree.

1 2 0



6 . P e r f o r m a n c e 6. The Yellow Pages

Our performance goal is to achieve the same
throughput is measured on a previous
release of the system that used the" network
only as a disk (and thus did not permit
sharing). Measurements are taken on a
well-defined configuration and set of
benchmarks. Current indications are that
we will attain that goal.

The Sun implementation of the NFS has a
number of performance enhancements, such
as "fast paths" to eliminate the work done
for. high-runner operations, asynchronous
service of multiple requests, caching of disk
blocks, and asynchronous read-ahead and
write-behind. The fact that caching ^nd
read-ahead occur on both the client and the
server effectively increases the cache sisc and
read-ahead distance. Caching and read-
ahead do not add state to the server;
nothing (except performance) is lost if
cached information is thrown away. In the
case of write-behind, both the client and
server attempt to flush critical information
to disk ^vhenever necessary to reduce the
impact of an unanticipated failure; clients
do not free write-behind blocks until the
server verifies that the data is written.

The fiexibility of the NFS allows
configuration for a variety of cost and
performance trade-ofb. For example,
configuring servers with large, high-
performance disks and clients with no disks
may yield better performance at lower cost
than having many many machines with
small, inexpensive disks. Furthermore, it is
possible to distribute the file system data
across many servers and get the added
benefit of multiprocessing without losing
transparency. In the case of read-only files,
copies can be kept on several servers to
a v o i d b o t t l e n e c k s t o t h e i n f o r m a t i o n . I n
more complex situations, trade-ofib can be
made between keeping portions of the file
system data local or remote.

The Yellow Pages (YP) [4| is an independent
service from the NFS; we include this
discussion because the YP plays an
important role in initialization and
administration of the NFS as installed at
S u n .

From the point of view of the servers and
clients, the YP is a centralized read-only
database. For a client, this means that an
application's access to the data served by
the YP is independent of the relative
locations of the client and server.

It is important to note that the YP provides
a c l ient access to data wi thout recourse to
the file system. This fact allows greater
generality in the initialization of clients by
allowing them to access information needed
to mount file systems without requiring
them to mount the filesystem containing a
fi l e w i t h t h a t i n f o r m a t i o n .

The YP is a collection of cooperating server
processes that use a simple discipline to
distribute data among themselves. Thus,
the servers share the load of providing access
to data and the failure of a server need not
disabte the network. The YP does not
implement a true distributed database: for
every relation in the database, one YP server
is designated to control the update of data
for the entire collection of YP servers. Thus,
the administration of an entire network of
servers and clients is done from a single
point of contact. Should the control server
fail, an alternate server can be designated as
the control. The policy for distributing
changes through the network yields a weak
form of consistency: the databases across the
ne twork w i l l be cons is ten t a f te r a
"reasonable" time has elapsed. A system
administrator can choose to have changes
distributed periodically according to a
schedule, or can cause them to propagate
immediately.

The most obvious use of the YP is for
administration of JetelpasBwd. Since the
NFS uses a UNIX protection scheme across
the network, it is advantageous to have a

1 2 1



c o m m o n d a t a b a s e f o r t h e
servers and clients on the network. The YP
allows a single point of administration and
gives all servers and clients access to a
recent version of the data, whether or not it
is held locally. To install the YP version of
fctelpasBwd, existing applications were not
changed, they were simply relinked with
library routines that know about the YP
service. Conventions have been added to
library routines that access f etcfpasswd to
allow each client to administer its own local
subset of fetcjpaetwd; the local subset
modifies the client's view of the system
version. Thus, a client is not forced to
completely bypass the system adminstrator
in order to accomplish a small amount of
personalization.
The YP interface is implemented using RPC
and XDR, so the service is available to non-
UNDC operating systems and non-Sun
machines. YP servers do not interpret data
in the databases, so it is possible for new
databases to take advantage of the YP
service without modifying the servers.

7 . C o n c l u s i o n

The NFS is designed to provide file system
service in a heterogeneous network of
machines and networks. Sun has
implemented the NFS interface for the Sun
Workstation and 4.2 BSD UNIX operating
system. New tools are provided to aid in
the administration of an NFS network. The
NFS interface is designed to encourage
further development of the nodes and the
network; Sun plans to use it as a basis for
further product development and has opened
the interface to customers and other vendors
in order to encourage an atmosphere of
mutually beneficial product development.
At this time (December 18, 1984), the NFS
has been used foF serious work for over two
months; steady improvements in robustness
and performance have been made based on
experience gained. During the first weeks,
crashes brought to light many bugs;
however, no files were lost. We do not yet
have MTBF data, as we tend to boot new

versions before failures occur (every 3 to 5
days). Presently, we are converting all
internal development to use the NFS, and
will collect reliability data based on general
use within Sun. The NFS will be shipped to
customers in Spring, 1985.

Sun is collaborating with several other
vendors to make the NFS available as part of
their product line.

8. Acknowledgements
The network services architecture and the
NFS were championed at Sun by Bill Joy.
Bill Shannon and other Sun employees have
provided a great deal of valuable advice to
the NFS project.

9. Bibl iography
[1] Joy, W. N. The UNIX Si/stem in the

Laboratory, UNIX/WORLD, vol. 1, no. 4,
1984, pp. 34-38.

[2] Remote Procedure Call Reference
Manual, Sun Microsystems, Inc.

[3| External Data Representation Reference
Manual, Sun Microsystems, Inc.

(4] Yellow Pages Reference Manual, Sun
Microsystems, Inc.

1 2 2



Figure 1: NFS Architecture and Implementation

sys calls

1 2 3



Figure 2: Example NFS Use

s e r v e r

1 2 4

View publication stats

https://www.researchgate.net/publication/391955561

