
Draft '.0 of envery Ss. I9R4 

Sun Network File Protocol Design Considerations 

Bul Joy 

. Company Confidential 

ABSTRACT 

The Sun Network File Service uses a connectionless datagram-based remote pro- 

cedure call protocol to provide shared file access. This document explains the 
design principles in the protocol, and the facilities provided by the File Service 
which is to be implemented using the protocol. 

The protocol is specifically designed for use by clients who use local data and 
naming caches to improve performance. The protocol is optimized for this cach- 
ing case, and is very efficient when used in this manner. Cache flushing and con- 

sistency checking occurs at specified points; in normal UNIX operation this is at 

file open, close and feync calls. This increases system performance greatly with 
minimal impact on applications. 

Guaranteeing full distributed consistency with the protocol is also possible but 
quite a bit more expensive. 

Introduction 

This document describes the protocol used by the Sun Network File Service. A general descrip- 

tion of the Network File System Provided by the server is to be found in the document ‘Design 

of the Sun Network File System.” A description of the modifications to UNIX to support this and 
other file protocols can be found in “Sun UNIX Modifications to use the Sun Network File Ser- 
vice.” 

Principles 

The guiding principle of the File Service is that it is stateless. Clients make requests of the ser- 
vice by datagrams and receive responses by datagrams. The file service caches authentication 
information supplied by clients, recent requests which have been completed, and the data supplied 

in response to recent requests. This cache often allows the File Service to avoid reexecuting 
requests which are resubmitted because a confirmation of the execution of the request was lost or 

did not arrive at the client quickly enough. The service, however, makes no guarantees to keep 

old responses, and reserves the right to reexecute duplicate requests. 

The File Service does not guarantee that operations which are submitted to it are performed 
unless acknowledgements are received. Operations may fail to be performed because they are lost 
enroute to the server, or because the server crashes after receive them. Operations may be per- 

formed without confirmation to the client because the acknowledgement is lost or because the 
server (or client) crashes. 

When the host supporting the File Service crashes it loses all the state of client requests and 

authentication information which was provided to it by these clients. This differs from the cache 

flushing which can occur during normal operation only in the amount of information which is lost. 
Client nodes recover just as they do when normal cache flushing occurs: by resubmitting authenti- 

cation information, and by recovering from requests for which responses weren't received by 

resubmitting requests and processing the responses as they do whenever retransmissions are



required. 

Discussion 

The File Service is designed to be used with caches on each client node, where clients desire to 
trade absolute consistency checking for much greater performance. Thus is allows read-ahead and 
write behind and caching of directory entrys in pathnames, and should greatly improve the per- 
formance of the system. 

The File Service does not provide a transaction facility, as discussed in the Network File System 
design document. Given that it does not, it helps its clients maintain consistent file system state 
by providing the clients with a set of atomic operations. Under these conditions, it would be pos- 
sible to attempt to maintain end-to-end state with each client about all the files the client had 
open and the exact state of each operation which the client has in progress. 
The difficulty of this approach is that there are a potentially enormous number of open files in the 
network and a very large number of clients active working with each server. Requiring a server 
machine to maintain hundreds or even thousands of open files in tables could easily cause the 
server to waste precious space on rarely used information. After a client crash, the server would 
have to poll to notice that a machine had crashed to be able to reclaim the space. 
The benefit for all this is very little if the server can operate without guaranteeing to hold all this 
information. Rather than holding information about all the files in use by all the clients, the 
server can be designed to cache recently used information and not make guarantees to keep any 
of it permanently. Thus the response datagram from the server to a client, which has about a 
02% chance of being lost, is not acknowledged by the client, minimizing message traffic. Even 
between a rarely communicating client and server, a single read operation can involve only one 
message exchange, 50% less messages than any scheme where the server guarantees to retransmit 
any response until it is acknowledged. 

We believe this approach has the potential for very high performance and can serve large number 
of clients with huge numbers of open files quite successfully. 

Facilities provided by the File Service 

The File Service maintains a hierarchical file system containing a number of files, each of which 
has a set of file attributes, and contains an uninterpreted array of bytes. These files are refer- 
enced by clients using low-level names supplied by the File Service to the client in response to 
requests. 

When a client authenticates itself to a server it receives in response a Shandle (a low level name) 
for the root directory of the File Service's file system. A set of requests exist which take a fhandle 
representing a directory file in the file system and a name, and perform an operation affecting the 
directory: entering a link, removing a file, renaming a file, creating a file, or, most importantly, 
looking up the fhandle for a specified name within the directory. 
The following operations on fhandle’s do not involve directories: 

write[fhandle, offset, length, data] => [errcode, length] 
read|fhandle, offset, length] => [errcode, length, data] 
writeattr|fhandle, attributes] => [errcode, attributes} 
readattr[fhandle, attributes] => [errcode, attributes] 

The fhandle structure consists of a integer inode number within the File Service file system, and a unique-id further identifying the inode, since UNIX occasionally reuses the same inode number for 
different files. 

The errcode's are from a small set defined by the protocol, and include



as 

FERR_BADFHANDLE fhandle is invalid 
FERR_QUOTAXCEED quota exceeded on write 
FERR_NOPERM insufficient permission to perform operation 
FERR_IOERR physical device error executing operation 

Each of the operations also passes a protection context; in UNIX terms this is a uid and a set of 
gids. An authentication message to the server executes an authentication protocol to establish 
protection contexts. The authentication protocol also allows the establishment of DES keys for 
further datagrams so that communications can be secured. These mechanisms are part of Sun’s 
Network Architecture and are beyond the scope of this document. 
The attributes are an externalized form of the vattr structure defined for vnodes in the file 
vnode.h. See the appendix to the “UNIX Modifications” document. 
The operations defined above correspond to those operations on files defined for unodes, e.g. 
VOP_RW, VOP_READATTR, VOP_WRITEATTR. In addition the file server has operations 
which apply to files which are of type directory, call them dhandle’s: : 

lookup[dhandle, name, attributes] => [errcode, fhandle, attributes} 
create[dhandle, name, attributes] => [errcode, fhandle] 
remove|dhandle, name] => [errcode] 
rename|dhandlenew, namenew, dhandleold, nameold] => [errcode] 

The name argument to these calls is a counted byte string. It is used to index a single level of the 
directory hierarchy of the File Service. 

The lookup operation returns a fhandle for a particular name, and also returns the attributes of 
the resulting fhandle. 

The create operation makes a new entry in the hierarchical file system with the specified attri- 
butes (e.g. type, file mode, etc), returning a handle for the new file. 
The remove operation deletes an entry from the directory structure. This causes the underlying 
fhandle to become invalid, unless there is another name in the directory hierarchy for this fhandle. 

Issues 

1. Cached translations? 

We expect that client machines will use their local memory to cache data blocks and also transla- 
tion triples: 

[dhandle, name] => [fhandle} 

Such translations are relatively safe when used in the middle part of a long path name translation 
provided the last component is checked with the server. This means, however, that translations 
where the target yields a non-directory are less safe. 
We can address stale translations by doing a lot more work with the server to insure that stale 
translations are not used, or we can not worry about it and simply force translations to time out 
periodically. I propose we cache long-term on the client only directory name translations and to 
revalidate translations for files each time a UNIX-level operation takes place. This validation 
would take the form of a lookup and we will request an attribute which returns a generation-id for 
the file indicating the last time it was modified. This insures that at least at the point a file is 
reopened all stale cache buffers are flushed. 

In any case it must be possible on a per-filesystem, per-file, per-directory or per-process basis (not 
all of these, just some probably) to request no caching.



e4- 

2. Detecting server reboots to force cache flushing 
The clients should also detect when a file server has rebooted since this can permit a data block in a file to change without the client being able to tell by looking at the generation number of the file in its attributes at the next open. If this weren't the case then we would have to do two file i/o operations for each write to the file: one to write the new data after one to update the genera- tion count. 

We thus flush the cache completely when we detect that the server has been rebooted. Since the server forces us through an authentication message each time it reboots, we can insure this by returning the boot time of the server as a result of each authentication sequence and, if this does not correspond to our understanding of when the server was booted, we flush all our caches about the server. 

3. How do we recover from lost messages? 

Consider a request to make a link from a to b. To be able to recover from a lost response to the link the client must conceptually perform a series of steps, e.g.: 
1. Check that 5 does not exist, and repeat until you get a response. If 5 exists then exit with an error. 

2. Check that a exists, getting a fhandle for it; repeat until a response is received. If there is no a, then exit with an error. 

Request that the link be made. If there is a response, then that is the answer. 
4. We didn’t get a response. Check to see if 6 is the same as a; if it is, then we completed the link successfully and the response was just lost. If it exists, but is not the same, then there is an error. If it doesn't exist, then we try to create it again, starting at 3. 
In the case we have local caching, then we are likely to know whether we believe that 6 exists, and to know what fhandle corresponds to a (from recent activity). This allows us to skip steps 1 and 2. As we normally receive a response to step 3, the entire operation can be achieved in one message exchange. If we wish to run without caching then the full set of steps must take place, with a message exchange per step. In this case, more Messages are involved then would be required in a state-based protocol (6 versus 3). 

4. Referencing files after they are removed? 
Some UNIX programs may depend on the quirk that files can be removed from directories and still accessed even though they have no names. Such files can take up a lot of disk space and can’t be reclaimed till the reference goes away. The File Service has no notion that there is a reference to such a file, and removes it when it is removed! If the program really wants its open files to never go away it should insist that they continue to have names, so that they remain referenced. 

It has always been possible to reduce the length of a file that was in use to 0. This as good as makes it go away, and is what most people would expect a remove to do. The current strage behaviour is rarely supported on other operating systems, and thus it can be considered antisocial behaviour for a program to have in a heterogeneous network environment. 
Such programs will need to be cleaned up. 

5. Devices? 

Remote devices have state. They are thus not real suitable for access using this protocol, and are the subject of another protocol. 


